Flexcon vessels in cooling and air conditioning installations

Flamco b.v.
P.O. Box 115 2800 AC Gouda - Holland Telephone: + 31182591800 info@flamco.nl

With these applications, the expansion vessel has the following functions

- When the installation cools, the volume of the cooling water reduces.

The Flexcon vessel adds water to the installation, so that it remains under pressure.

- When the installation is put out of operation, the water can assume the ambient temperature and therefore expand.
The Flexcon vessel now absorbs this expansion volume.
Antifreeze has a coefficient of expansion which is much greater than that of water
All Flexcon vessels can be used in installations whereby antifreeze based on ethylene or propylene glycol is added to the water.
The following graph shows the volume increase for various mixtures of water and ethylene glycol. The figures given here are average values that have been taken from the documentation of Hoechst for Antifrogen N.

Temperature	Volume increase of pure water in \%
$5^{\circ} \mathrm{C}$	0.00\%
$10^{\circ} \mathrm{C}$	0.04\%
$15^{\circ} \mathrm{C}$	0.08\%
$20^{\circ} \mathrm{C}$	0.18\%
$25^{\circ} \mathrm{C}$	0.29\%
$30^{\circ} \mathrm{C}$	0.43\%
$35^{\circ} \mathrm{C}$	0.60\%
$40^{\circ} \mathrm{C}$	0.79\%

Calculation of a Flexcon vessel in a cooling installation

The following data is important for the calculation of a Flexcon vessel in a cooling installation:
a. water contents of the installation;
b. percentage of antifreeze added;
c. lowest temperature of the installation;
d. highest temperature of the installation (i.e. highest ambient temperature);
e. percentage expansion of the water and antifreeze mixture;
f. static height of the installation above the vessel;
g. blow-off pressure of the safety valve.

The initial pressure of the Flexcon vessel is chosen according to the static height of the installation (above the vessel).
The lowest working pressure must be 0.5 bar higher than the initial pressure of the vessel, so that the total water contents are not expelled from the vessel when the installation cools and a reserve amount of water remains in the vessel at the lowest temperature.
The following formula can be used to determine how much of the vessel is filled in this state.
I $\frac{\text { lowest working pressure - initial pressure }}{\text { lowest working pressure }}=$ filled content ${ }^{*}$

With this, the residual factor can be determined.
Residual factor $=1-$ filled content.
The final pressure must be remain 0.5 bar below the blow-off pressure of the safety valve.
The efficiency is determined with the following formula:

II $\frac{\text { final pressure }- \text { lowest working pressure }}{\text { final pressure }} \times$ residual factor

* pressures in bar absolute

Galculation example

Calculation of the filling pressure

Continuation of calculation example

Residual factor according to \mathbf{I} :
$\frac{(1+1)-(0.5+1)}{(1+1)}=0.25$. Therefore, residual factor $=1-0.25=0.75$
The efficiency according to II:
$\frac{(2.5+1)-(1+1)}{(2.5+1)} \times 0.75=0.32$
The expansion volume at $30^{\circ} \mathrm{C}$ is 1,000 litres $\times 0.43 \%=4.3$ litres
Required gross contents of the Flexcon vessel $=\frac{4.3}{0.32}=13.4$ litres.

Vessel to be selected Flexcon 18/0.5.

Data

a. water contents 1,000 litres;
b. no addition of antifreeze, just normal water;
c. lowest temperature $+4^{\circ} \mathrm{C}$;
d. highest ambient temperature $+30^{\circ} \mathrm{C}$;
e. percentage of volume increase at $30^{\circ} \mathrm{C}: 0.43 \%$;
f. static height 4 m (initial pressure 0.5 bar, lowest working pressure 1 bar);
g. blow-off pressure of the safety valve 3 bar (final pressure 2.5 bar).

Calculation

The pressure with which the installation must be filled depends on the temperature at which this takes place.

If the percentage volume increase of the mixture at the filling temperature is known, the expansion volume at this temperature can be determined.

Then, the filling pressure can be determined with the following formula:
Gross vessel contents \times residual factor \times (lowest working pressure +1)
(Gross vessel contents \times residual factor) - expansion volume at filling temperature
h. filling temperature $=20^{\circ} \mathrm{C}$
i. percentage volume increase at $20^{\circ} \mathrm{C}=0.17 \%$

Expansion volume at $20^{\circ} \mathrm{C}$ is 1,000 litres $\times 0.17 \%=1.7$ litres
Filling pressure $\frac{18 \times 0.75 \times(1+1)}{(18 \times 0.75)-1.7}-1=1.3$ bar.

